66 research outputs found

    Role of ammonia in European air quality with changing land and ship emissions between 1990 and 2030

    Get PDF
    The focus of this modeling study is on the role of ammonia in European air quality in the past as well as in the future. Ammonia emissions have not decreased as much as the other secondary inorganic aerosol (SIA) precursors – nitrogen oxides (NOx) and sulfur dioxide (SO2) – since the 1990s and are still posing problems for air quality and the environment. In this study, air quality simulations were performed with a regional chemical transport model at decadal intervals between 1990 and 2030 to understand the changes in the chemical species associated with SIA under varying land and ship emissions. We analyzed the changes in air concentrations of ammonia, nitric acid, ammonium, particulate nitrate and sulfate as well as changes in the dry and wet deposition of ammonia and ammonium. The results show that the approximately 40 % decrease in SIA concentrations between 1990 and 2010 was mainly due to reductions in NOx and SO2 emissions. The ammonia concentrations on the other hand decreased only near the high-emission areas such as the Netherlands and northern Italy by about 30 %, while there was a slight increase in other parts of Europe. Larger changes in concentrations occurred mostly during the first period (1990–2000). The model results indicate a transition period after 2000 for the composition of secondary inorganic aerosols due to a larger decrease in sulfate concentrations than nitrate. Changes between 2010 and 2030 – assuming the current legislation (CLE) scenario – are predicted to be smaller than those achieved earlier for all species analyzed in this study. The scenario simulations suggest that if ship emissions will be regulated more strictly in the future, SIA formation will decrease especially around the Benelux area, North Sea, Baltic Sea, English Channel and the Mediterranean region, leaving more ammonia in the gas phase, which would lead to an increase in dry deposition. In the north of the domain, the decrease in SIA would be mainly due to reduced formation of particulate nitrate, while the change around the Mediterranean would be caused mainly by decreased sulfate aerosol concentrations. One should also keep in mind that potentially higher temperatures in the future might increase the evaporation of ammonium nitrate to form its gaseous components NH3 and HNO3. Sensitivity tests with reduced NOx and NH3 emissions indicate a shift in the sensitivity of aerosol formation from NH3 towards NOx emissions between 1990 and 2030 in most of Europe except the eastern part of the model domain.The focus of this modeling study is on the role of ammonia in European air quality in the past as well as in the future Ammonia emissions have not decreased as much as the other secondary inorganic aerosol (SIA) precursors - nitrogen oxides (NOx) and sulfur dioxide (SO2) - since the 1990s and are still posing problems for air quality and the environment. In this study, air quality simulations were performed with a regional chemical transport model at decadal intervals between 1990 and 2030 to understand the changes in the chemical species associated with SIA under varying land and ship emissions. We analyzed the changes in air concentrations of ammonia, nitric acid, ammonium, particulate nitrate and sulfate as well as changes in the dry and wet deposition of ammonia and ammonium. The results show that the approximately 40 % decrease in SIA concentrations between 1990 and 2010 was mainly due to reductions in NOx and SO2 emissions. The ammonia concentrations on the other hand decreased only near the high-emission areas such as the Netherlands and northern Italy by about 30 %, while there was a slight increase in other parts of Europe. Larger changes in concentrations occurred mostly during the first period (1990-2000). The model results indicate a transition period after 2000 for the composition of secondary inorganic aerosols due to a larger decrease in sulfate concentrations than nitrate. Changes between 2010 and 2030 - assuming the current legislation (CLE) scenario - are predicted to be smaller than those achieved earlier for all species analyzed in this study. The scenario simulations suggest that if ship emissions will be regulated more strictly in the future, SIA formation will decrease especially around the Benelux area, North Sea, Baltic Sea, English Channel and the Mediterranean region, leaving more ammonia in the gas phase, which would lead to an increase in dry deposition. In the north of the domain, the decrease in SIA would be mainly due to reduced formation of particulate nitrate, while the change around the Mediterranean would be caused mainly by decreased sulfate aerosol concentrations. One should also keep in mind that potentially higher temperatures in the future might increase the evaporation of ammonium nitrate to form its gaseous components NH3 and HNO3. Sensitivity tests with reduced NOx and NH3 emissions indicate a shift in the sensitivity of aerosol formation from NH3 towards NOx emissions between 1990 and 2030 in most of Europe except the eastern part of the model domain.Peer reviewe

    Source Apportionment of Brown Carbon Absorption by Coupling Ultraviolet-Visible Spectroscopy with Aerosol Mass Spectrometry

    Get PDF
    The impact of brown carbon (BrC) on climate has been widely acknowledged but remains uncertain, because either its contribution to absorption is being ignored in most climate models or the associated mixed emission sources and atmospheric lifetime are not accounted for. In this work, we propose positive matrix factorization as a framework to apportion the contributions of individual primary and secondary organic aerosol (OA) source components of BrC absorption, by combining long-term aerosol mass spectrometry (AMS) data with concurrent ultraviolet-visible (UV-vis) spectroscopy measurements. The former feature time-depend ent factor contributions to OA mass, and the latter consist of wavelength-dependent absorption coefficients. Using this approach for a full-year case study, we estimate for the first time the mass absorption efficiency (MAE) of major light-absorbing water soluble OA components in the atmosphere. We show that secondary biogenic OA contributes negligibly to absorption despite dominating the mass concentration in the summer. In contrast, primary and secondary wood burning emissions are highly absorbing up to 500 nm. The approach allowed us to constrain their MAE within a confined range consistent with previous laboratory work, which can be used in climate models to estimate the impact of BrC from these emissions on the overall absorption.The impact of brown carbon (BrC) on climate has been widely acknowledged but remains uncertain, because either its contribution to absorption is being ignored in most climate models or the associated mixed emission sources and atmospheric lifetime are not accounted for. In this work, we propose positive matrix factorization as a framework to apportion the contributions of individual primary and secondary organic aerosol (OA) source components of BrC absorption, by combining long-term aerosol mass spectrometry (AMS) data with concurrent ultraviolet-visible (UV-vis) spectroscopy measurements. The former feature time-depend ent factor contributions to OA mass, and the latter consist of wavelength-dependent absorption coefficients. Using this approach for a full-year case study, we estimate for the first time the mass absorption efficiency (MAE) of major light-absorbing water soluble OA components in the atmosphere. We show that secondary biogenic OA contributes negligibly to absorption despite dominating the mass concentration in the summer. In contrast, primary and secondary wood burning emissions are highly absorbing up to 500 nm. The approach allowed us to constrain their MAE within a confined range consistent with previous laboratory work, which can be used in climate models to estimate the impact of BrC from these emissions on the overall absorption.Peer reviewe

    Resolving anthropogenic aerosol pollution types - deconvolution and exploratory classification of pollution events

    Get PDF
    Mass spectrometric measurements commonly yield data on hundreds of variables over thousands of points in time. Refining and synthesizing this raw data into chemical information necessitates the use of advanced, statisticsbased data analytical techniques. In the field of analytical aerosol chemistry, statistical, dimensionality reductive methods have become widespread in the last decade, yet comparable advanced chemometric techniques for data classification and identification remain marginal. Here we present an example of combining data dimensionality reduction (factorization) with exploratory classification (clustering), and show that the results cannot only reproduce and corroborate earlier findings, but also complement and broaden our current perspectives on aerosol chemical classification. We find that applying positive matrix factorization to extract spectral characteristics of the organic component of air pollution plumes, together with an unsupervised clustering algorithm, k -means C C, for classification, reproduces classical organic aerosol speciation schemes. Applying appropriately chosen metrics for spectral dissimilarity along with optimized data weighting, the source-specific pollution characteristics can be statistically resolved even for spectrally very similar aerosol types, such as different combustion-related anthropogenic aerosol species and atmospheric aerosols with similar degree of oxidation. In addition to the typical oxidation level and source-driven aerosol classification, we were also able to classify and characterize outlier groups that would likely be disregarded in a more conventional analysis. Evaluating solution quality for the classification also provides means to assess the performance of mass spectral simi-larity metrics and optimize weighting for mass spectral variables. This facilitates algorithm-based evaluation of aerosol spectra, which may prove invaluable for future development of automatic methods for spectra identification and classification. Robust, statistics-based results and data visualizations also provide important clues to a human analyst on the existence and chemical interpretation of data structures. Applying these methods to a test set of data, aerosol mass spectrometric data of organic aerosol from a boreal forest site, yielded five to seven different recurring pollution types from various sources, including traffic, cooking, biomass burning and nearby sawmills. Additionally, three distinct, minor pollution types were discovered and identified as amine-dominated aerosols.Peer reviewe

    14 th Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes -2-6

    Get PDF
    Abstract: We modeled the air quality in Europe during June and January 2006 using the MM5/CAMx model system. In this paper, we discuss the sensitivity of ozone and aerosol formation to precursor emissions such as isoprene, NOx, VOC and NH3. Model results suggested that increased isoprene emissions by a factor of four in June 2006 would lead to an increase in afternoon ozone by up to 10% mainly in southern Europe. On the other hand, the effect of increased isoprene emissions on secondary organic aerosols was predicted to be very small due to low yields for the SOA production pathway from isoprene in the model. Our predictions indicate that NOx emission reductions are more effective to reduce ozone concentrations in a large part of Europe. On the other hand, anthropogenic VOC emission reductions are effective only around the urban areas. Sensitivity tests with reduced NOx and NH3 emissions suggest that aerosol formation is more sensitive to ammonia emissions in winter except a small area in central Europe. In summer, effects of NOx and NH3 emission reductions on aerosol concentrations are predicted to be lower mostly because of lower ammonium nitrate concentrations

    Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber

    Get PDF
    We present a new mobile environmental reaction chamber for the simulation of the atmospheric aging of different emissions sources without limitation from the instruments or facilities available at any single site. Photochemistry is simulated using a set of 40 UV lights (total power 4 KW). Characterisation of the emission spectrum of these lights shows that atmospheric aging of emissions may be simulated over a range of temperatures (-7 to 25°C). A photolysis rate of NO2, JNO2, of (8.0±0.7)×10-3 s-1 was determined at 25°C. We demonstrate the utility of this new system by presenting results on the aging (OH=12×106 cm-3h) of emissions from a modern (Euro 5) gasoline car operated during a driving cycle (New European Driving Cycle, NEDC) on a chassis dynamometer in a vehicle test cell. Emissions from the entire NEDC were sampled and aged in the chamber. A thorough investigation of the composition of the gas phase emissions suggests that the observed SOA is from previously unconsidered precursors and processes. This large enhancement in PM mass from gasoline vehicle aerosol emissions due to SOA formation, if it occurs across a wider range of gasoline vehicles, would have significant implications for our understanding of the contribution of on-road gasoline vehicles to ambient aerosols.JRC.F.8-Sustainable Transpor

    Utilidad de la electrocardiografía en la clínica veterinaria de animales de compañía

    Get PDF
    The electrocardiography is a diagnostic tool for the veterinary clinic of companion animals. In patients with cardiologic signs is the best non invasive means to evaluate the electric activity of the heart. It allows us to evaluate the present of arrhythmias, the pre-surgical state, assess the anaesthetic risk and check the pharmacologic treatments in cardiac patients amongst other. The objective of the present work was to illustrate the advantage of the electrocardiographic assess in canine and felíne patients, and its limitations and contraindications as well.La electrocardiografía es una herramienta diagnóstica de utilidad básica en la clínica veterinaria de animales de compañía. En pacientes con signos clínicos cardiológicos constituye la mejor alternativa diagnóstica para evaluar la actividad eléctrica del corazón de forma no invasiva El electrocardiograma permite demostrar la presencia de arritmias, colabora en la evaluación prequirúrgica y en la valoración del riesgo anestésico, ayuda a monitorear los tratamientos farmacológicos de pacientes cardiópatas, sugiere la presencia de sobrecargas camerales atriales y ventriculares cardíacas y complementa el diagnóstico en patologías de origen metabólico y endócrino. El objetivo del presenta trabajo es mostrar las distintas ventajas que presenta la evaluación electrocardiográfica en pacientes caninos y felinos, así como las límitaciones y contraindicaciones que presenta su estudio

    Elucidating the present-day chemical composition, seasonality and source regions of climate-relevant aerosols across the Arctic land surface

    Get PDF
    The Arctic is warming two to three times faster than the global average, and the role of aerosols is not well constrained. Aerosol number concentrations can be very low in remote environments, rendering local cloud radiative properties highly sensitive to available aerosol. The composition and sources of the climate-relevant aerosols, affecting Arctic cloud formation and altering their microphysics, remain largely elusive due to a lack of harmonized concurrent multi-component, multi-site, and multi-season observations. Here, we present a dataset on the overall chemical composition and seasonal variability of the Arctic total particulate matter (with a size cut at 10 mu m, PM10, or without any size cut) at eight observatories representing all Arctic sectors. Our holistic observational approach includes the Russian Arctic, a significant emission source area with less dedicated aerosol monitoring, and extends beyond the more traditionally studied summer period and black carbon/sulfate or fine-mode pollutants. The major airborne Arctic PM components in terms of dry mass are sea salt, secondary (non-sea-salt, nss) sulfate, and organic aerosol (OA), with minor contributions from elemental carbon (EC) and ammonium. We observe substantial spatiotemporal variability in component ratios, such as EC/OA, ammonium/nss-sulfate and OA/nss-sulfate, and fractional contributions to PM. When combined with component-specific back-trajectory analysis to identify marine or terrestrial origins, as well as the companion study by Moschos et al 2022 Nat. Geosci. focusing on OA, the composition analysis provides policy-guiding observational insights into sector-based differences in natural and anthropogenic Arctic aerosol sources. In this regard, we first reveal major source regions of inner-Arctic sea salt, biogenic sulfate, and natural organics, and highlight an underappreciated wintertime source of primary carbonaceous aerosols (EC and OA) in West Siberia, potentially associated with the oil and gas sector. The presented dataset can assist in reducing uncertainties in modelling pan-Arctic aerosol-climate interactions, as the major contributors to yearly aerosol mass can be constrained. These models can then be used to predict the future evolution of individual inner-Arctic atmospheric PM components in light of current and emerging pollution mitigation measures and improved region-specific emission inventories.Peer reviewe
    • …
    corecore